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LETTER TO THE EDITOR 

Damage spreading in the Ising model with Glauber 
dynamics 

Peter Grassberger 
Physics Department, University of Wuppertal, D42097 Wuppertal. Germany 

Received 17 November 1994 

Abstract. We present accurate simulations of damage spreading for Glauber dynamics of the 
Ising model near the spreading threshold Td. Without magnetic field, we find rd < Tc both in 
two and three dimensions. For temperatures above Td there exists acritical magnetic field Bd(T)  
below which the.damage spreads. In all cases the uitical behaviour at threshold is consistent 
with directed percolahon. 

Damage spreading [1,3] has become a very useful tool in studying time-dependent 
phenomena in spin systems and in stochastic cellular automata. Here one studies two 
copies of the same system with slightly different initial conditions but with identical 
(pseudo-)random number sequences. The sites where the two configurations disagree are 
called ‘damaged‘, and one is interested in whether the initial damage will grow (indicating 
a sensitive dependence on initial conditions) or will shrink (or ‘heal’). In particular, using 
this method with heat-bath updating and following the spatial evolution of the damage, it 
was recently shown [4] that one can obtain very precise estimates of dynamical critical 
exponents in Ising models with ‘model A’ dynamics [SI.: 

In the latter example, the threshold for damage spreading coincides with &e Curie 
point Tc. Thus at the threshold there are long-range correlations in the ‘undamaged‘ system. 
Alternatively, there exist cases where the undamaged system at’ the damage spreading 
transition shows no sign of any critical behaviour or any other special features. It was 
conjectured in [6] that in such cases this transition .should be in the universality class 
of directed percolation (DPj. This was.supported in [6] by large-scale simulations of the 
Domany-Kinzel automaton [7] where a damage spreading transition had been found .by 
Martins etal [SI. 

For Ising models, the heat-bath algorithm has a  very special propem [9] (called 
‘monotonicity’ in [lo]) which is not shared’by other popular algorithms like Glauber or 
Metropolis (for precise definitions of these algorithms in the context of damage spreading, 
see [ll]). Assume we have two replicas~of the same lattice, iet us call them A and B, and 
assume that we have at time r = 0 

$A’ (0) > Sp(0) (1) 

for each site 2.’ Thus each ‘up’ spin in B is also ‘up’.in A, while the opposite is not 
necessarily true. It is straightforward to check that (1) remains true for all subsequent 
times, if we use the heat-bath algorithm with identical sequences of random numbers for 
updating A and B. 
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The importance of this monotonicity for damage spreading was’pointed out by Coniglio 
et a1 [91. Assume that the initial configurations of A and B are identical except for a single 
spin at x = 0 for which we assume Sr’(0) = +;, SF’(0) = -; (only So is ‘damaged’). 
Since SiA)@) 2 SLB)(t) for all x and t > 0, the amount of damage at any times t > 0 is 
related to response and correlation functions. More precisely, the response function is given 
by the average value 

(2)  

(3) 

where now SAA)@) = +$, Sr ’ ( t )  = -4 are kept fixed for all times (they are not kept fixed 
in ( Z ) ,  and in all cases considered in the following). This implies, in particular, that any 
damage has to heal at all temperatures above Tc and at any non-zero magnetic field B. 
Moreover, at T < Tc any finite initial damage cannot modify the spontaneous symmetry 
breaking and must also heal due to ergodicity and mixing within each broken state. 

For other updating algorithms, response and correlation functions are given by (2) and (3) 
without the absolute values. Without monotonicity the average damage (which is still defined 
with absolute values) is then larger than the response and correlation functions, respectively 
1111. In particular, this means that the damage spreadini transition for B = 0 must be at 
a temperature Td < T,. In three dimensions this was indeed seen for Glauber updating by 
Costa [12] and Le Caer [13,14] who found Ta/T 0.96 and w 0.91, respectively. The 
latter author also found that for each T > Td there is a finite critical magnetic field &(T) 
above which the damage no longer spreads. For d = 2 there seems to be no published 
study of the influence of magnetic fields, while the behaviour at B = 0 was studied‘ in [3]. 
These authors concluded that Td = Tc. 

One of the reasons for the present study was to check whether there really is a qualitative 
difference between two and three dimensions. None of the above estimates of Td were very 
precise, and it could well be that Td = T for all dimension, or Td 4 Tc for all d. The latter 
case would be particularly interesting. Due to the conjecture of [6], we should then expect 
that the behaviour near Td is governed by directed percolation. Notice that this should be 
hue in any case for Bd # 0, provided such transitions do actually show up at T > G. To 
test this universality is the other main purpose of this paper. 

In all our studies we used the multispin code described in [6] which allowed us to study 
simultaneously 32 or 64 lattices. We always started with partially ordered lattices where all 
spins were uncorrelated. We also used completely independent initial configurations for the 
different replicas. Thus from each run we could estimate the damage in 32 x 7 or 64 x 9 
pairs of replicas, respectively. Actually, in this way we measured not the spreading but 
the healing of damage, but this should be equivalent. In particular, the necessary scaling 
laws for DP are well known both for spreading and for healing. For B = 0, starting with 
MO # 0 is then essential just to break symmetry. In addition, a bad choice of MO can 
lead to very late scaling. Our data shown were obtained after some experimenting with the 
precise value of MO, but no systematic optimization was done. Lattice sizes were up to 
2579 x 2580 and 30g2 x 310 with helical boundary conditions, and updating was done in 
paralIeI on checker-board sublattices. 

In all runs, the only measured quantity was the total amount of damage D ( t )  (= the 
Hamming distance between the replicas) as a function of time. If indeed the transition is in 
the DP universality class, we should expect power-law decays at 5, 

R ( s ,  t )  = (lSi*)(t) - Sf’ ( f ) l )  

C(Z) = 1-m lim  IS:^'(^) - s?)(t)J) 

while the static correlation function is given by 

D(t)  - t-’ (4) 
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Figure 1. Log-lag plot of the total damage D ( t )  (divided by the lattice volume) in the m 
Ising model with Glauber dynamics: Tern- are as indicated in the figure. In thc initial 
states all spins were independent and the average magnetization was Mu = t. The broken line 
(whose intercept is arbitrary) has the slope -0.46 predined from DP. 

with S = 0.46 in d = 2 [15] and S = 0.74 in d = 3 [16]. Away from Td, we should see a 
scaling law 

with @(O) finite and with ur = 1.29 (d = 2) and 1.12 (d = 3), respectively. 
Results for D ( f )  as a function of time are shown in figure 1 for seven different 

values of T. We sie clearly~that the transition occurs below Tc; Roughly, we find 
G/Tc = 0.992 f 0.002. A more precise estimate is difficult due to the obvious deviations 
from scaling; indeed, these deviations are not surprising. They result from the closeness 
between Tc and Td. At our estimated value of G we have E = (Tc - Td)/T, Fs 8 x 
and thus an king correlation time s sz E-”, W 3 x lo4. Thus we have no chance to see 
DP scaling in our present simulations. One might hope to improve the situation by starting 
with equilibrium states, but the change would only be marginal. The king correlation length 
would be 5 ~s E-” sz 12.5. Using u/vr  = 0.57 for DP in (2t- 1) dimensions, we can estimate 
that DP scaling should be seen only for t >> ~ “ ~ I ”  W 5000. 

W i g s  improve if we go to T > T. In figure 2 we show aklogous results for 
T = 5 =-2.203Tc, for four different values of~B.  This time we should be far enough away 
from the king transition so that the DP scaling should set in much earlier. This is indeed 
seen very clearly, and our exponent 6 is obviously in agreement with the prediction of DP. 
We also made NIIS at values’of B further away from Bd (not shown in figure 2), and they 
confirmed that v, is compatible (within rather large errors) with the DP value. 

We thus felt justified to also use the decay of %e damage to locate Ed for other 
values of T .  More precisely, we estimated Bd as that field strength at which (4) holds 
for 500 < t i 2000 with the exponent S predicted by DP. Results of this analysis are 
shown in figure 3. We see, in particular, that Bd tends towards a finite value for T --z CO. 

In this l i t  the amplitude in (4) diverges (since the decay of D(r) sets in only at times 
> constant x T), but we find DP exponents for all finite T .  

Finally, we also made the same analyses for d = 3. The results for B = 0 (shown in 

D(t )  - fM8@((T - Td)t””‘) (5) 
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Figure 2. Similar to figure 1, but for fixed T = 5 and for four different values of the magnetic 
held B = 0.?.46.0.347,0.3475 and 0.3485. Initial magnetization was MO = i. 

Figure 3. crilical magnetic field against 6 = 1 f T, for d = 2. Damage can only spread below 
the c m ,  while it always heals for B > Bd. 

figure 4) are in better agreement with DP than those for d = 2, as we should have expected 
from the larger distance of Td from the Curie point, 

(6) 
(we use T, = 0.221 655 [17]). From figure 4 we see that both 8 and vt agree with the 
values from DP. On the other hand, our precise value of Td indicates that it is not identical 
to the percolation transition for minority spins in Ising correlated percolation [lS] where 
T, = 0.96 with an error i 0.01. It is also slightly different from the damage spreading 
transition in the +.I spin glass 1191 and from the percolation threshold for saturated bonds 

Td/Tc = 0.9m zk 0.0005 
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Figure 5. Similar to figure 3, but ford = 3. 

in the &J spin glass [20]. 
Results for B,j in three dimensions are shown in figure 5. They are in good agrFment 

with the less precise values of 1141. For all temperatures, the observed exponent S agreed 
at Bd with that of DP.. 

Since there exists a DP transition in 1 + 1 dimensions, we  might^ also expect to find a 
damaging transition in the 1 - d king model. Numerically we found no such transition. 
For B = 0 damage spreads at all temperatures, while it heals at all'T for B # 0. We do not 
have any theoretical explanation for this. It does not, of course, contradict our conclusion 

In summary we have shown that damage spreading in the king model with Glauber 
dynamics is qualitatively the same in two and three dimensions, contrary to previous 

that the transition is DP in higher dimensions. . .  



L72 Letter to the Editor 

findings. Our values for Td are much more precise than previous estimates, as are also 
our values of Bd for T > Td. Part of this is due to an efficient implementation of 
multispin coding which uses the fact that we wanted to simulate several lattices with identical 
sequences of random numbers (otherwise providing independent random numbers is one of 
the problems in this sort of multispin coding [21]). But the main feature of the present 
investigation was that we directly measure the amount of damage as a function of time in 
runs with large initial damage. This also allowed us to compare our results most directly 
with predictions of directed percolation. We found that they are all compatible with the 
damage spreading transition being in the DP universality class, though the deviations from 
the predicted scaling laws in some cases are very large. But in those cases the origin of 
the deviations is well understood, and the deviations should disappear in the (very much 
delayed) scaling limit. 

Our results thus support the conjecture that damage spreading transitions are generically 
(i.e. when they do not coincide with transitions of the undamaged system) in the DP 
univdsality class. This stresses that one should again study damage spreading in disordered 
systems (spin glasses [20,19,22], Kauffman models [23,1,241) and check whether they are 
in the class of DP with frozen randomness 1251. Notice that there is a slight problem for 
Kauffman models where it can happen that damage neither spreads nor heals. But it should 
be possible to modify these models such that all non-spreading damages do heal. That this 
might then lead to the DP behaviour with frozen randomness was suggested earlier in [26]. 

I am indebted to I Campbell, N Jan, M Schreckenberg and D Stauffer for correspondence 
and discussions which I found ememely helpful. This work was supported by Deutsche 
Forschunggemeinschaft, SFEi 237. 
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